If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+20x-7150=0
a = 4; b = 20; c = -7150;
Δ = b2-4ac
Δ = 202-4·4·(-7150)
Δ = 114800
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{114800}=\sqrt{400*287}=\sqrt{400}*\sqrt{287}=20\sqrt{287}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-20\sqrt{287}}{2*4}=\frac{-20-20\sqrt{287}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+20\sqrt{287}}{2*4}=\frac{-20+20\sqrt{287}}{8} $
| 3a=-9a+7a | | -1(x-5)=0 | | 9=4y-19 | | k/7+7=21 | | 100-4p^2=0 | | 3(z+3)=7=3z+6-z | | -68=12-8v | | 6d+2=50 | | 3(4x-1)+3=-36 | | 10-9b=-9b-5b | | 2x^2+10x-3575=0 | | x+41+2x+125=x+163 | | (2t+9)/7=5 | | 8-11k=-233 | | (x-3)/(4)=12 | | -2w+8=6(w+8) | | 8e+4=-5e+14+13e | | 4^2-3v=4 | | h/4+-46=-39 | | 2x^2+x-2380=0 | | -167+62(3x-205)+369x=15 | | (2t+9)+(9/7=5 | | -8v+6(v+7)=24 | | 3x+24=-1x-(-5)+23 | | E^(2x)=1 | | 2n+11=63 | | 8m-15=25 | | 7^6*7^3=7n | | 4+3b=37 | | 9e+4=15e+14+13e | | 5(3x+4)-3x=4+7(2x-1( | | 1(3y+4)=13 |